P=(24y+y^2)

Simple and best practice solution for P=(24y+y^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P=(24y+y^2) equation:



=(24P+P^2)
We move all terms to the left:
-((24P+P^2))=0
We calculate terms in parentheses: -((24P+P^2)), so:
(24P+P^2)
We get rid of parentheses
P^2+24P
Back to the equation:
-(P^2+24P)
We get rid of parentheses
-P^2-24P=0
We add all the numbers together, and all the variables
-1P^2-24P=0
a = -1; b = -24; c = 0;
Δ = b2-4ac
Δ = -242-4·(-1)·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{576}=24$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24}{2*-1}=\frac{0}{-2} =0 $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24}{2*-1}=\frac{48}{-2} =-24 $

See similar equations:

| V(-2)=12(-2)-2x-5.8 | | 3(5x2-13x+24)=0 | | 38-x=2 | | 48/9x2=x3 | | -4.4x+4.8=-9x-7 | | 05x-0.75+9x=5x+1.5 | | 3x+9=+15-9 | | 4x^2-12x=-11 | | (2x-1)(x+3)=12x | | 4p^2+4p=24 | | 6x+4(0)=-36 | | -8+3i=8i-6 | | 6(0)+4y=-36 | | -6+3i=8i+2-6i | | -26a-1)=-5/3(3a+15)+6 | | 6t-30t2=0 | | (x-2)=(3x+2) | | 3a+4(=11)a-1(+19) | | 4t-7+87=180 | | 4t-7+87=90 | | 97=(6x+17) | | 97=6x+17 | | 97+(6x+15)=180 | | 5r-5+8r+3=180 | | (8x-2)=(7x+7) | | (8x-2)=(7x-7) | | 3x-12=1/2x-4 | | –u+–5=1 | | (3y+8)+9(16)+1=180 | | 3y+8+(9(16))+1=180 | | 8x+10.4=0.8x+20 | | 3y+8+9(16)+1=180 |

Equations solver categories